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Catalytic enantioselective addition of vinylmetals to activated 100 mol % CuCN in 3 h, but nearly all possible isomers are
alkenes is a potentially versatile but underdeveloped class of trans-generated (entry 2); formation &a is accompanied by 19% of

formationst Compared to processes with arylmetalsd, particu-
larly, alkylmetalstab processes with the corresponding vinylic

1,4-diened as well as the product from transfer of aBu group
(5, 10%). There is<2% conversion after 24 h with 1 mol % Cuy£l

reagents are of higher synthetic utility but remain scarce, and the 2H,0 (entry 3), and achiral NH® cannot help promote alkylation

few reported examples are Rh-catalyzed conjugate additidves.
have developed an efficient method for catalytic asymmetric allylic
alkylations (AAA) with vinylaluminum reagents that are prepared

(same outcome with (CuOTFfCeHe and 6). Similarly, in the
presence of chiral NH@g complexes742 or 8,08 there is no
reaction (entries 5,6). In a remarkable contrast, with only 0.5 mol

and used in situ; stereoselective reactions of commercially available % 9a,° AAA proceeds to>98% conversion in only 3 h, furnishing
DIBAL-H with readily accessible terminal alkynes efficiently —3ain >98% ee and with>98% $,2' andE selectivityl® The high

deliver the vinylmetals. Alkylations are promoted by -©2A5 mol
% chiral N-heterocyclic carbene (NHE3omplexes derived from
an air stable Cu salt. To the best of our knowledge, this is the first
report of catalytic AAA reactions involving vinylmetal reagehfts.
We began by examining reactions of vinylalumin@nwith
allylic phosphatela, which belongs to a less-examined category
of substrates for catalytic AAA.Reagent2 is generated from
hydroalumination of 1-octyne with DIBAL-H.When2 is used to
alkylatelain the presence of 1 mol % CuCN, there is no reaction
(Table 1, entry 1). Alkylation proceeds to 65% conversion with

Table 1. Synthesis of Vinylaluminum Reagents and Use in
Catalytic Allylic Alkylation?

rhex

enantioselectivity aside, the data in Table 1 highlight the unique
attributes of the Cu complex derived frddg, which readily initiates
alkylation with exceptional sitex(98% $,2') and group selectivity
(<2% 5). Direct synthesis of vinylaluminums with DIBAL-H is
an attractive feature of the method and compares favorably with
other protocols. Previous two-step protoéblsnvolve alkyne
hydrozirconation with the more costly and sensitiv€p,ZrHCI

(or hydroboration) followed by transmetallation with pZ&, which

is also relatively expensivé.

Various allylic phosphates can be used (Table 298%
conversion is obtained in-26 h with 0.5-1 mol % chiral catalyst.
Transformations of trisubstituted olefins bearing an aryl substituent
are shown in entries-18. Substrates bearing sterically demanding

_ rhex groups (entries 1, 3, 6, and 8), electron-withdrawing aryl units
D'B';L‘H a eqSL;vo(\;s:Il;]yne)l o (entries 2-5) or an unsubstituted phenyl (entry 7) undergo AAA
exanes, =, _ Ar = 0-MeCqH, in 82—94% vield and 87 te-98% ee. The reaction in entry 9 (88%
Me OPO(OE), mhex/\//g("B“)z Ar T yield, 77% ee) is an efficient but less selective AAA of a
N : 3a_ Me (Bu trisubstituted olefin with am-alkyl substituent. The only AAA that
Me 1a CTL‘HS:"L_:'%T‘C"' Ar ehex Ar affords the undesired chiraly3 product is one where the aryl
' Me 4 5 Me substituent contains an electron donating ortho methoxy group
— Tgand: FTo— ——F3a ceda (entry 6). As the examples in entries-102 indicate, alkylations
entry  Cusalt; mol % mol % ) (e AT o (e Table 2. Cu-Catalyzed AAA with Vinylaluminum Reagent 22
1 CuCN:1 none 24 <2 - - - 1 equiv DIBAL-H rhex
2 CuCN; 100 none 3 85 3861910 >98 - rhex—= (s alkyne) P
3 CuClpe2H,0;1 none o4 <2 _ _ _ OPO(OE), hexanes, 55 °C, 5 h
M\ } RN Ri
4 CuClyH,0; 1 MeSNagNMes T 5, 5 - - - Ro 0.5-1mol % 9a or 9b, 1-2mol % CuCly2H,0, R, >98%E
1/901 6 THF, 2-6 h in all cases®
5 CUC]2'2H20f1 7 05 24 <2 - - - NHC; mol %; temp Sy2' yield ee
6 CuCl2H,0,1 805 24 <2 - - - entry Ry R, mol%Cu  (°C) product (%)’ (%) (%)°
[7  CuCly2H;0;,1 9a;05 3 >98 >08:<2:<2 >98 >98|
1 o-MeCsHs Me 1la 9505;1 —-15 3a >98 87 >98
aConditions: 2.0 equiv of vinyl-Al reagent (vs substrate) undgriNH 2 oBrGHs Me 1b 95051 —-15 3b >98 84 96
NMR analysis (400 MHz)¢ By chiral HPLC (Supporting Information). 3  0oNOCgHs Me 1c 93051 —-15 3c >98 94 96
4 p-NOCe¢Hs Me 1d 9g0.5;1 —-15 3d >98 93 89
Ph 5 m-TsOGHs Me le 9305;1 —-15 3e >98 82 87
oy A 6 0MeOGH, Me 1f 9a051 —15 3f 90 8% 95
s il Nies 7 CéHs Me 1g 9505;1 —15 3g >98 84 92
Jci 8  1l-naphthyl Melh 95051 —15 3h >98 88 91
A Ag 9 Ph(CH) Me 1i 9051 —15 3i >98 88 77
\I 10 GHs H 10a 991;2 —-50 1la >98 90 79
o S 11 Cy H 10b 9b 1;2 -50 11b >98 92 86
r\ es H . —_
Q}A]\/k 12 PhMeSi H 10c 950.5;1 —-15 11c =98 91 93
SR
o aConditions: 2 equiv of vinyl-Al reagent (vs substrate); under NH
7 8 9aR =Ph NMR analysis (400 MHz)¢ Yield after purification; all conversions 98%.
Mes =2,4,6-(Me)sCeHa 9bR=H d By chiral HPLC (Supporting Information}.Yield of pure $2' product.
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of disubstituted olefins proceed in high yield but are less selective bearing versatile alkyl halide substituelitsan be synthesized 9
unless a sterically demanding group, such as a silyl substituent, isin 92% ee). Tris(homoallylic) ethe20 and allylsilane21 are

present (entry 12). The findings in entries B2 of Table 2 involve
modified complexdb, since in such cases, use3ztleads to lower
selectivities; 1,4-diene8i and 11ab,c are formed in 65%, 56%,
78%, and 90% ee, respectively, wh@ais employed. Reactions
in entries -8 proceed with identical degrees of asymmetric
induction when9a or 9b are used.

n-hex n-hex

P Z
Br 12 13
89% yield, >98% E, 91% ee 95% yield, >98% E, 87% ee
(2.5 mol % 9b, —50 °C, 24 h) (2.5 mol % 9b, -50 °C, 6 h)

Noteworthy are enantioselective syntheses of acyclic 1,4-diene

12(91% ee) and bicyclic dient3 (87% ee; 69% ee witBa); these
transformations illustrate that catalytic AAA can be used with vinyl

bromides and cyclic alkenes. Other alkynes may be employed to

access product$4—17, bearing different vinyl groups (Table 3;
>98% Sy2' and E selectivity). Alkynes with sizable substituents
can be utilized: 1,4-dieng7 (entry 4, Table 3) is obtained in 93%
yield and 88% ee (82% ee wi®s).

Table 3. Cu-Catalyzed AAA of Vinylaluminum Reagent Derived
from Various Terminal Alkynes?

1 equiv DIBAL-H R
I (vs alkyne) -
OPO(OEt), = hexanes,
55°C,5h
PR Ph
Me 0.5 mol % 9a or 9b, Me
1 1 mol % CuCl,*2H,0, >98% E and Sp2'
9 THF, -15 °C, 2-6 h in all cases®
yield ee
entry R NHC product (%)° (%)?
1 PhCH 9b 14 85 91
2 (cyclopent)CH 9a 15 90 92
3 cyclohex 9a 16 91 91
4 t-Bu 9b 17 93 88

aConditions: 2 equiv of vinyl-Al reagent (vs substrate); under NH
NMR analysis (400 MHz)¢ Yield after purification; all conversions 98%.
d By chiral HPLC (Supporting Information).

Additional attributes of the method are illustrated by preparation

of 18-22 Enantioselective synthesis di8 demonstrates that

obtained in 93% and 89% ee, respectively, and exclusivellg as
alkene isomers. Allylethe22 s, in contrast, formed witkr 98% Z
selectivity (80% ee)? In the latter case, the initial hydroalumination
is likely directed by the proximal Lewis basic, albeit sterically
demandingf-butoxy ether to generateas-vinylaluminum.

The utility of this method is showcased by the one-pot, gram-
scale transformation in eq 1. Treatment of 1-octyne with DIBAL-
H, addition of a mixture oPa (0.5 mol %) and CuGI2H,0 (1
mol %, from a commercial bottle), followed by the addition of 1.42
grams of allylic phosphatég, results in the formation 08g in
94% vyield and 92% ee>98% E). The Cu-catalyzed three-
component enantioselective process was performed on a bench top
without the need to resort to glovebox techniques.

n-hex
1.78 mL (10.0 mmol) DIBAL-H, hexanes,
55 °C, 5 h; 7
mrhex—= OPO(OEY) M
2
1.48 mL 0.5 mol % 9a, Ph Ve 3
(1109, PR 19 1 mol % CuCly2H,0 e 39
10.0 mmol) Me THF. —15°C. 6 h 94% yield (1.14 g),
1.42 g (5.0 mmol) ' ' >98% E, 92% ee
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